High Emission Density Thermionic Cathode

Arnold Shih, Code 6844

E-mail: shih@estd.nrl.navy.mil

Phone: (202)767-2260 FAX: (202)767-1280

Vacuum Electronics Branch

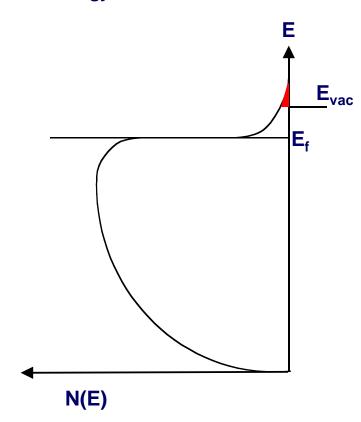
Naval Research Laboratory

Washington D.C. 20375

Workshop on Cathodes for Relativistic Electron Beams

May 10 - 11, 2001

High Emission Density Thermionic Cathode


- Historical development
- Properties of various cathodes
 Emission capability
 Operation: activation and poisoning
 Life

OUTLINE

- 1. Work function: figure of merit
- 2. W and thoriated W cathodes
- 3. Oxide cathodes
- 4. Dispenser cathodes
- 5. Scandate cathodes

Work Function

Electron energy distribution in a metal

$$\Phi = \mathbf{E}_{\mathsf{vac}} - \mathbf{E}_{\mathsf{f}}$$

Richardson equation

$$J = AT^2 e^{-\Phi/\kappa T}$$

$$A = 120 \text{ A/cm}^2 \text{ K}$$

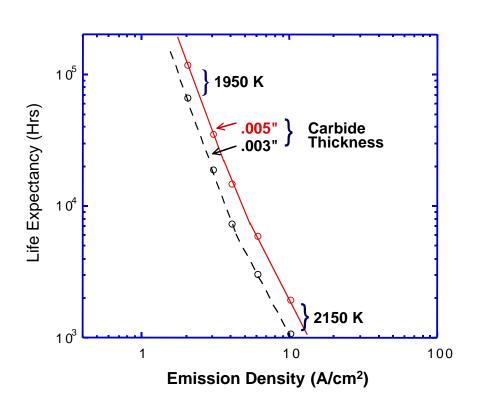
Φ (eV)	T (K)	J (A/cm ²)
4.6	2600	1
4.6	2500	0. 4
3.6	2500	41

 Φ about 4.6 eV for W

Thoriated Tungsten

Thoriated Tungten (Th-W):

A small percentage of thoria in W.


Thorium diffuses to the surface of the tungsten, and reduces the work function.

Carburization reduces the evaporation rate of the thorium.

	A _o	$\Phi_{{}_{\!$
Th-W	4	2.65

Reference data for engineers: Radio,Electronics, Computer & Communications 8th Edition, p16-3, ed. M.Van Valkenburg, Newnes Press, Boston MA, 1993

Life Expectancy for a Switch Tube with a Th-W Cathode

T.E.Yingst, et al, Proc. IEEE, March 1973

The Relation of Φ_0 to Φ

Work function determination using Richarson plot yields $\Phi_{\,{}_{\!\!\boldsymbol{0}}}$.

 $\Phi_{\,{}_{\rm O}}$ is the temperature-independent part of Φ .

i.e.
$$\Phi = \Phi_o + c T$$

Re-write the Richardson equation,

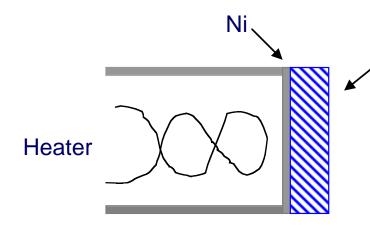
J = AT² exp (-
$$\Phi_o$$
 + c T)/ κ T
= [A exp (- c/ κ)] T² exp (- Φ_o / κ T)

For Th-W:

$$\Phi_{o} = 2.65$$

 $A_{o} = [120 \exp(-c/\kappa)] = 4$

	A _o	$\Phi_{{}_{\!\!o}}$
Th-W	4	2.65


or equivalently

$$\Phi = 2.65 + 2.9 \times 10^{-4} \text{ T}$$

	Т	Φ	J(A/cm²)
Th-W	1950K	3.22	2.2
	2150K	3.27	12.0

Oxide Cathodes

	Φ (eV)	T (K)	J (A/cm ²)
W	4.6	2608	1
Th-W	3.2	1870	1
Oxide	1.5	942	1

BaO, SrO, CaO Standard ASTM mixture 49%, 44%, 7% (atomic %)

Nickel substrate:

Active Ni, Ni with impurities such as W

$$\Phi$$
 = 1.5 eV

Passive Ni, Ni without active impurity

$$\Phi = 1.85 \, \text{eV}$$

Preparation and Processing of Oxide Cathodes

Sprayed method:

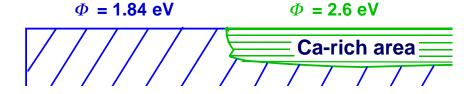
BaCO₃, CaCO₃ and SrCO₃ are dissolved in organic solvent. After mixing thoroughly, the solution is sprayed onto nickel substrates.

Applied method (Sarong cathode)

BaCO₃, CaCO₃ and SrCO₃ in organic binder forms a self-supporting sheet. Disks are cut from the sheet and applied to nickel substrate.

Potential problem:

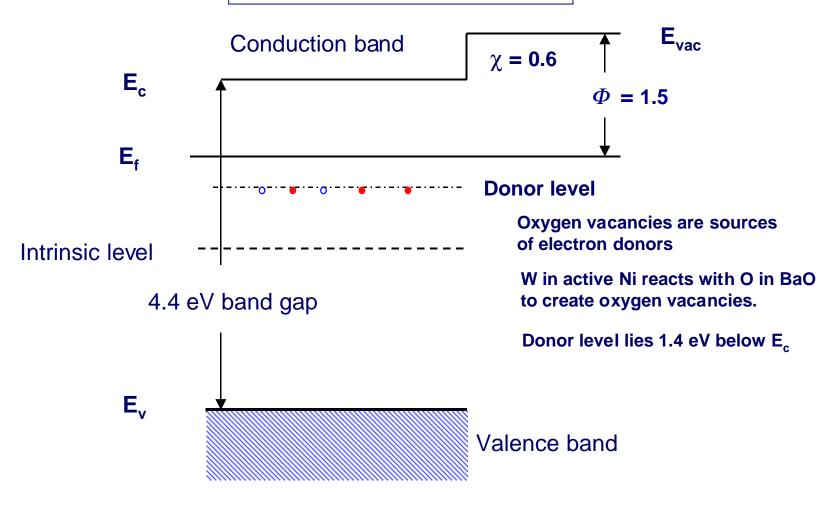
Copious gas release during the initial cathode heating.


$$2 BaCO3 \longrightarrow BaO \cdot BaCO_3 + CO_2 \uparrow$$

$$BaO \cdot BaCO_3 \longrightarrow 2 BaO + CO_2 \uparrow$$

$$T = 800^{\circ}C$$

Melting temperature of the eutectic basic barium carbonate, BaO·BaCO₃, occurs at about 900°C.


If this melting occurs CaO can segregate to the surface.

Reference: Shih and Haas, Appl.Surface Sci. 2(1979)164

Work Function of Oxide Coating

Band diagram of BaO

Reference: Haas and Shih, Appl. Surface Sci. 8(1981) 145

Properties of Oxide Cathodes

Activation mechanism:

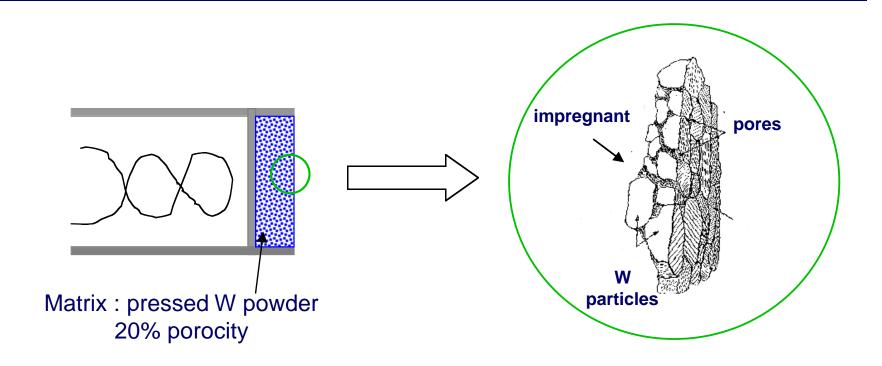
Generation of oxygen vacancies,

which shifts E, from the intrinsic level to above the donor level

 Φ = 1.5 with active Ni substrate

 Φ = 1.85 with passive Ni substrate

Poisoning mechanism:


Annihilation of oxygen vacancies.

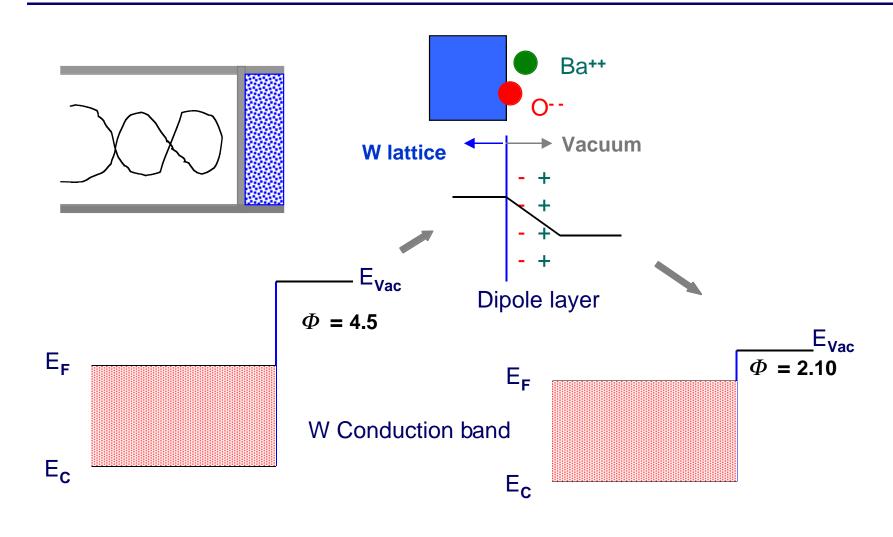
Poisoning gases: O₂, CO₂, H₂O and S.

Disadvantage of oxide cathodes:

- Not robust against residual gas poisoning.
- Coating flakes off after air exposure.
- Low D.C. emission, <= 1 A/cm².

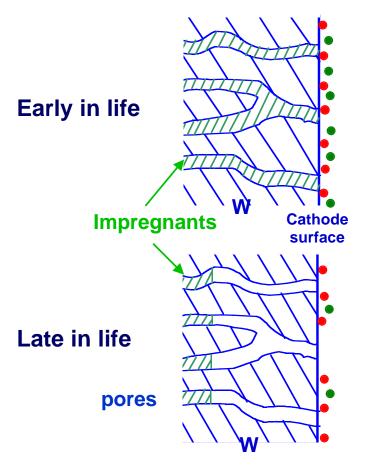
Standard Dispenser Cathodes

Impregnant:


4BaO, CaO, Al_2O_3 : [411], S-type

5BaO, 3CaO,2Al $_2$ O $_3$: [532], B-type

W provides the electrical conductivity.


BaO lowers Φ .

Work Function of a Dispenser Cathode

Cathode Surface Changes with Life

Cross-sectional view

Early in life, almost a full layer of Ba and O on the cathode surface.

During operation, desorption of Ba occurs, but a supply of Ba from the pores maintains a full coverage on the surface.

Impregnants near the pore end depletes during life, resulting in low surface Ba coverage and poor emission.

Properties of Dispenser Cathodes

Cathode poisoning:

CO₂, O₂ or H₂O adsorption reduces dipole effect CO, CH₄, H₂ or N₂ adsorption does no harm, but C residue poisons cathodes.

Reactivation from poisoning:

Thermal desorption of the poisoning gases.

Impregnant replenishes the surface Ba.

Compared to oxide cathodes:

More robust against gas poisoning.

Reusable after air exposures.

No DC emission limitation.

Higher work function.

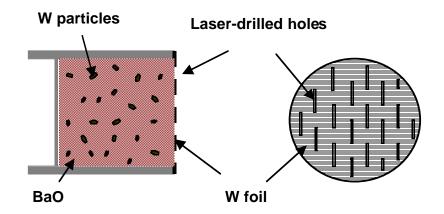
	Φ (eV)	T (J =1 A/cm ²)
Oxide	1.5	942 K
Standard	2.1	1277 K
Os-coated	1.95	1194 K

Modification of Dispenser Cathodes

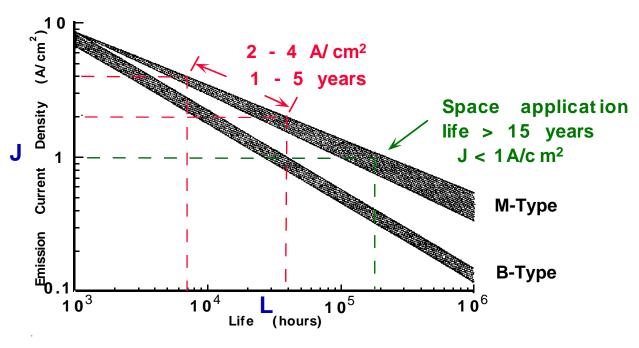
Coating: Strengthening the dipole

Φ	(eV)
_	(- /

Os-coating (M-type) 1.95 Os-W alloy-coating ~1.85 Ir-W alloy-coating ~1.85


Structure: Improve life or uniformity

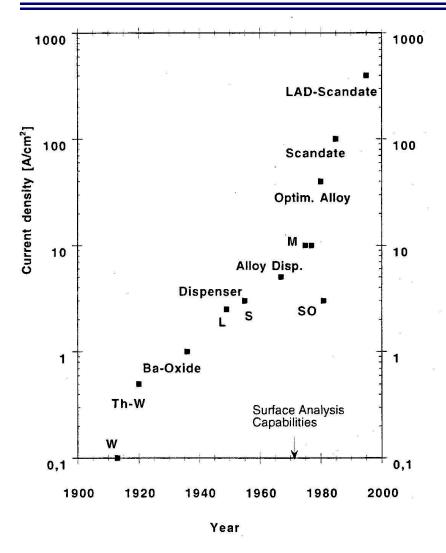
Reservoir of Ba: RV cathodes


Long life

Controlled pores: CPD cathodes

Uniform emission

Trade-off between life and J


A.S.Gilmour,"Microwave Tubes", p132, (1986) Artech House, Inc.

Life test at very high J:

B-cathode: 45 A/cm², 50 hours at 1620K, LLNL

R.E.Thomas et al, IEEE Trans on Electron Devices 37,no.3 (1990) 850.

Historical Development of Thermionic Cathode Emission Capability

G.Gartner et al, Appl. Surface Sci 111 (1997) 11.

	${oldsymbol{\Phi}}$
Standard dispenser	2.15 eV
M-type	1.95 eV
Optimum Alloy	1.85 eV
the best Scandate	1.47 eV

Philips Research Lab claims: 400 A/cm² at 1300 K

Emission capability of a cathode with $\Phi = 1.47 \text{ eV}$

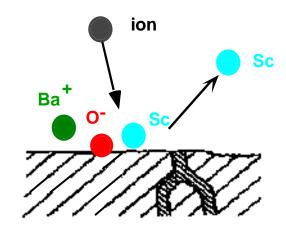
T (K)	T(°C)	J (A/cm²)
1300	1030	400
1200	930	115
1100	830	26
1000	730	4.6

Scandate Cathodes Are Not Yet Available

Practical issues:

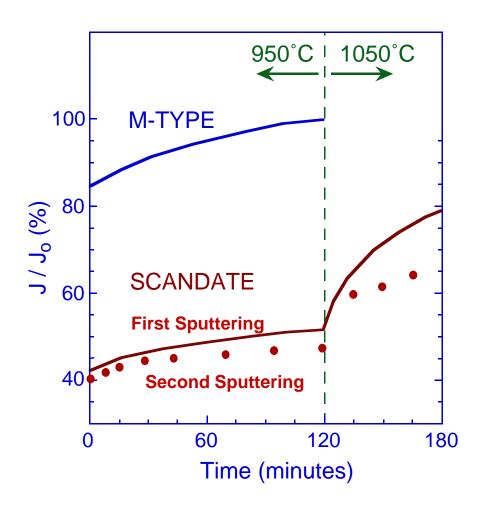
Unavailable commercially.

Fabrication technique needs to be developed.


Philips Research Lab. Provided little information.

Fundamental issues:

- 1. Robustness in practical environment.
- 2. Emission uniformity.


Slow Emission Recovery from Ion Beam Damage

Cathode in Tube Environment:

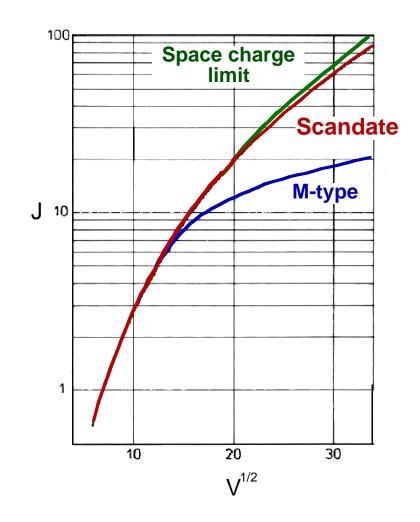
Ion Bombardment Removes Sc

⇒ Sc Needs to be Replenished

J. Hasker et al Appl. Surface. Sci. 26(1986) 173

Scandate Emission Characteristics

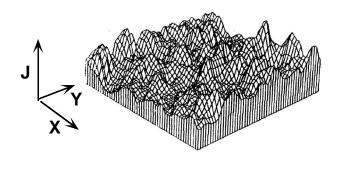
<u>Dispenser Cathodes (e.g. M-Type):</u>


- Observe emission "saturation"
- Surface emission model (uniform ϕ)

Scandate Cathodes

- Emission continues to rise
- Emission model: unknown


Two Possible Models:


- 1. Semiconductor Emission Model
- → Uniform emission
- 2. "Patchy" Surface Emission Model
- → Higher J but non-uniform emission

Emission Uniformity Measurement Technique

Scanning Anode Probe

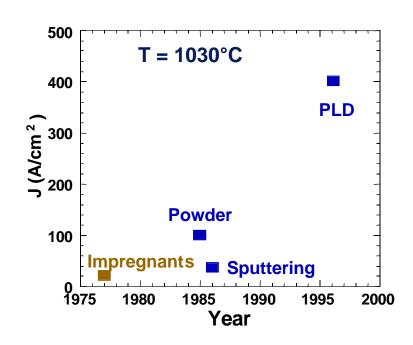
Emission Mapping

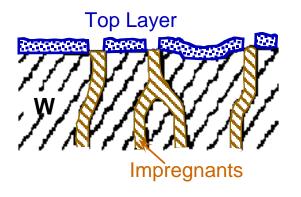
Fabrication Methods of Scandate Cathode

Scandate cathode types J (T=1300 K)

Pressed W + $Ba_3Sc_4O_9$ 5 - 10 A/cm²

Sc in the impregnant 20 A/cm²


Top-layer types


Mixed powder 100 A/cm²

Sputtered 35 - 80 A/cm²

Pulsed Laser Deposition 400 A/cm²

(or Laser Ablation)

